آشنایی
واژهٔ کوانتوم (به معنی «بسته» یا «دانه») در مکانیک کوانتومی از اینجا می‌آید که این نظریه به بعضی از کمیت‌های فیزیکی (مانند انرژی یک اتم در حال سکون) مقدارهای گسسته‌ای نسبت می‌دهد. بسیاری از شاخه‌های دیگر فیزیک و شیمی از مکانیک کوانتومی به عنوان چهارچوب خود استفاده می‌کنند؛ مانند فیزیک ماده چگال، فیزیک حالت جامد، فیزیک اتمی، فیزیک مولکولی، شیمی محاسباتی، شیمی کوانتومی، فیزیک ذرات بنیادی، و فیزیک هسته‌ای. پایه‌های مکانیک کوانتومی در نیمهٔ اول قرن بیستم به وسیلهٔ ورنر هایزنبرگ، ماکس پلانک، لویی دوبروی، نیلس بور، اروین شرودینگر، ماکس بورن، جان فون نویمان، پاول دیراک، ولفگانگ پاولی و دیگران ساخته شد. بعضی از جنبه‌های بنیادی این نظریه هنوز هم در حال پیشرفت است.

توصیف مکانیک کوانتومی از رفتار سامانه‌های فیزیکی اهمیت زیادی دارد، زیرا در مقیاس اتمی نظریه‌های کلاسیک نمی‌توانند توصیف درستی ارائه دهند. مثلاً، اگر قرار بود مکانیک نیوتنی و الکترومغناطیس کلاسیک بر رفتار یک اتم حاکم باشند، الکترون‌ها به سرعت به سمت هسته اتم حرکت می‌کردند و به آن برمی‌خوردند. ولی در دنیای واقعی الکترون‌ها در نواحی خاصی دور اتم‌ها باقی می‌مانند.


در ساختار مکانیک کوانتومی، حالت هر سیستم در هر لحظه به وسیلهٔ یک تابع موج مختلط توصیف می‌شود (که در مورد الکترون‌های یک اتم گاهی به آن اُربیتال می‌گویند). با این ابزار ریاضی می‌توان احتمال نتایج مختلف در آزمایش‌ها را پیش‌بینی کرد. مثلاً با آن می‌توان احتمال یافتن الکترون را در ناحیهٔ خاصی در اطراف هسته در یک زمان مشخص محاسبه کرد. بر خلاف مکانیک کلاسیک، نمی‌توان هم‌زمان کمیت‌های مزدوج را، مانند مکان و تکانه، با هر دقتی پیش‌بینی کرد. مثلاً می‌توان گفت که الکترون در ناحیهٔ مشخصی از فضا است، ولی مکان دقیق آن را نمی‌توان معلوم کرد. البته معنی این حرف این نیست که الکترون در تمام این ناحیه پخش شده‌است. الکترون در یک ناحیه از فضا یا هست و یا نیست. این ناتوانی در تعیین مکان الکترون را اصل عدم قطعیت هایزنبرگ به طور ریاضی بیان می‌کند.

پدیدهٔ دیگری که منجر به پیدایش مکانیک کوانتومی شد، امواج الکترومغناطیسی مانند نور بودند. ماکس پلانک در سال ۱۹۰۰ هنگام مطالعه بر روی تابش جسم سیاه کشف کرد که انرژی این امواج را می‌توان به شکل بسته‌های کوچکی در نظر گرفت. آلبرت اینشتین از این فکر بهره برد و نشان داد که امواجی مثل نور را می‌توان با ذره‌ای به نام فوتون که انرژی‌اش به بسامدش بستگی دارد توصیف کرد. این نظریه‌ها به دیدگاهی به نام دوگانگی موج-ذره بین ذرات زیراتمی و امواج الکترومغناطیسی منجر شد که در آن ذرات نه موج و نه ذره بودند، بلکه ویژگی‌های هر دو را از خود بروز می‌دادند. مکانیک کوانتومی علاوه بر این که دنیای ذرات بسیار ریز را توصیف می‌کند، برای توضیح برخی از پدیده‌های بزرگ‌مقیاس (ماکروسکوپیک) هم کاربرد دارد، مانند ابررسانایی و ابرشارگی.


مکانیک کوانتومی و فیزیک کلاسیک

اثرات و پدیده‌هایی که در مکانیک کوانتومی و نسبیت پیش‌بینی می‌شوند، فقط برای اجسام بسیار ریز یا در سرعت‌های بسیار بالا آشکار می‌شوند. تقربیاً همهٔ پدیده‌هایی که انسان در زندگی روزمره با آن‌ها سروکار دارد به طور کاملاً دقیقی توسط فیزیک نیونتی قابل پیش‌بینی است.

در مقادیر بسیار کم ماده، یا در انرژی‌های بسیار پایین، مکانیک کوانتومی اثرهایی را پیش‌بینی می‌کند که فیزیک کلاسیک از پیش‌بینی آن ناتوان است. ولی اگر مقدار ماده یا سطح انرژی را افزایش دهیم، به حدی می‌رسیم که می‌توانیم قوانین فیزیک کلاسیک را بدون این که خطای قابل ملاحظه‌ای مرتکب شده باشیم، برای توصیف پدیده‌ها به کار ببریم. به این «حد» که در آن قوانین فیزیک کلاسیک (که معمولاً ساده‌تر هستند) می‌توانند به جای مکانیک کوانتومی پدیده‌ها را به درستی توصیف کنند، حد کلاسیک گفته می‌شود.


کوشش برای نظریهٔ وحدت‌یافته
وقتی می‌خواهیم مکانیک کوانتومی را با نظریهٔ نسبیت عام (که توصیف‌گر فضا-زمان در حضور گرانش است) ترکیب کنیم، به ناسازگاری‌هایی برمی‌خوریم که این کار را ناممکن می‌کند. حل این ناسازگاری‌ها هدف بزرگ فیزیکدانان قرن بیستم و بیست‌ویکم است. فیزیکدانان بزرگی همچون استیون هاوکینگ در راه رسیدن به نظریهٔ وحدت‌یافتهٔ نهایی تلاش می‌کنند؛ نظریه‌ای که نه تنها مدل‌های مختلف فیزیک زیراتمی را یکی کند، بلکه چهار نیروی بنیادی طبیعت -نیروی قوی، نیروی ضعیف، الکترومغناطیس و گرانش- را نیز به شکل جلوه‌های مختلفی از یک نیرو یا پدیده نشان دهد.


مکانیک کوانتومی و زیست شناسی
بتازگی تحقیقات چند موسسه در امریکا و هلند نشان داده است که بسیاری از فرایندهای زیستی از مکانیک کوانتومی بهره می برند. قبلا تصور می شد فتوسنتز گیاهان فرایندی بر پایه بیوشیمی است اما تحقیقات پروفسور فلمینگ و همکارانش در دانشگاه برکلی کالیفرنیا و دانشگاه سنت لوییس واشنگتن به کشف یک مرحله کلیدی از فرآیند فوتوسنتز منجر شده که بر مکانیک کوانتومی استوار است. همچنین پژوهشهای کریستوفر آلتمن، پژوهشگری از موسسه دانش نانوی کاولی در هلند، حاکی از آن است که نحوه کارکرد سلولهای عصبی خصوصا در مغز که تا مدتها فرایندی بر پایه فعالیتهای الکتریکی و بیوشیمی پنداشته می شد و محل بحث ساختارگرایان و متریالیتها و زیستشناسها بود، شامل سیستمهای کوانتومی بسیاری است. این پژوهشها نشان می دهد که سلول عصبی یک حلزون دریایی می تواند از نیروهای کوانتومی برای پردازش اطلاعات استفاده کند. در انسان نیز، فیزیک کوانتومی احتمالا در فرآیند تفکر دخیل است.

تقسیم ماده:

بیایید از یک رشته‌ی دراز ماکارونی پخته شروع کنیم. اگر این رشته‌ی ماکارونی را نصف کنیم، بعد نصف آن را هم نصف کنیم، بعد نصفِ نصف آن را هم نصف کنیم و... شاید آخر سر به چیزی برسیم ــ البته اگر چیزی بماند! ــ که به آن مولکولِ ماکارونی می‌توان گفت؛ یعنی کوچکترین جزئی که هنوز ماکارونی است. حال اگر تقسیم کردن را باز هم ادامه بدهیم، حاصل کار خواص ماکارونی را نخواهد داشت، بلکه ممکن است در اثر ادامه‌ی تقسیم، به مولکول‌های کربن یا هیدروژن یا... بربخوریم. این وسط، چیزی که به درد ما می خورد ــ یعنی به دردِ نفهمیدن کوانتوم! ــ این است که دست آخر، به اجزای گسسته ای به نام مولکول یا اتم می رسیم.
این پرسش از ساختار ماده که «آجرک ساختمانی ماده چیست؟»، پرسشی قدیمی و البته بنیادی است. ما به آن، به کمک فیزیک کلاسیک، چنین پاسخ گفته ایم: "ساختار ماده، ذره ای و گسسته است"؛ این یعنی نظریه‌ی مولکولی.

تقسیم انرژی:
بیایید ایده‌ی تقیسم کردن را در مورد چیزهای عجیب تری به کار ببریم، یا فکر کنیم که می توان به کار برد یا نه. مثلاً در مورد صدا. البته منظورم این نیست که داخل یک قوطی جیغ بکشیم و در آن را ببندیم و سعی کنیم جیغ خود را نصف ـ نصف بیرون بدهیم.
صوت یک موج مکانیکی است که می تواند در جامدات، مایعات و گازها منتشر شود. چشمه های صوت معمولاً سیستم های مرتعش هستند. ساده ترین این سیستم ها، تار مرتعش است، که در حنجره ی انسان هم از آن استفاده شده است. به‌راحتی(!) و بر اساس مکانیک کلاسیک می توان نشان داد که بسیاری از کمیت های مربوط به یک تار کشیده مرتعش، از جمله فرکانس، انرژی، توان و... گسسته (کوانتیده) هستند. گسسته بودن در مکانیک موجی، پدیده ای آشنا و طبیعی است (برای مطالعه‌ی بیشتر می توانید به فصل‌های ۱۹ و ۲۰ «فیزیک هالیدی» مراجعه کنید). امواج صوتی هم مثال دیگری از کمیت های گسسته (کوانتیده) در فیزیک کلاسیک هستند. مفهوم موج در مکانیک کوانتومی و فیزیک مدرن جایگاه بسیار ویژه و مهمی دارد که جلوتر به آن می رسیم و یکی از مفاهیم کلیدی در مکانیک کوانتوم است.
پس گسسته بودن یک مفهوم کوانتومی نیست. این تصور که فیزیک کوانتومی مساوی است با گسسته شدن کمیت های فیزیکی، همه‌ی مفهوم کوانتوم را در بر ندارد؛ کمیت های گسسته در فیزیک کلاسیک هم وجود دارند. بنابراین، هنوز با ایده‌ی تقسیم کردن و سعی برای تقسیم کردن چیزها می‌توانیم لذت ببریم!

مولکول نور:
خوب! تا اینجا داشتیم سعی می کردیم توضیح دهیم که مکانیک کوانتومی چه چیزی نیست. حالا می رسیم به شروع ماجرا:
فرض کنید به جای رشته‌ی ماکارونی، بخواهیم یک باریکه‌ی نور را به طور مداوم تقسیم کنیم. آیا فکر می کنید که دست آخر به چیزی مثل «مولکول نور» (یا آنچه امروز فوتون می‌نامیم) برسیم؟ چشمه های نور معمولاً از جنس ماده هستند. یعنی تقریباً همه‌ی نورهایی که دور و بر ما هستند از ماده تابش می‌کنند. ماده هم که ساختار ذره ای ـ اتمی دارد. بنابراین، باید ببینیم اتم ها چگونه تابش می کنند یا می توانند تابش کنند؟

تابش الکترون:
در سال ۱۹۱۱، رادرفورد (۹۴۷-۱۸۷۱) نشان داد که اتم ها، مثل میوه‌ها، دارای هسته‌ی مرکزی هستند. هسته بار مثبت دارد و الکترون‌ها به دور هسته می چرخند. اما الکترون های در حال چرخش، شتاب دارند و بر مبنای اصول الکترومغناطیس، «ذره‌ی بادارِ شتابدار باید تابش کند» و در نتیجه انرژی از دست بدهد و در یک مدار مارپیچی به سمت هسته سقوط کند. این سرنوشتی بود که مکانیک کلاسیک برای تمام الکترونها پیش ‌بینی می‌کند. طیف تابشی اتمها، بر خلاف فرضیات فیزیک کلاسیک گسسته است. به عبارت دیگر ، نوارهایی روشن و تاریک در طیف تابشی دیده می‌شوند.
اگر الکترونها به این توصیه عمل می‌کردند، همه‌‌ مواد (از جمله ما انسانها) باید از خود اشعه تابش می‌کردند (و همانطور که می‌دانید اشعه برای سلامتی بسیار خطرناک است)، ولی می‌بینیم از تابشی که باید با حرکت مارپیچی الکترون به دور هسته حاصل شود اثری نیست و طیف نوری تاب ش ‌شده از اتمها بجای اینکه در اثر حرکت مارپیچی و سقوط الکترون پیوسته باشد، یک طیف خطی گسسته است؛ مثل برچسبهای رمزینه‌ای (barcode) که روی اجناس فروشگاهها می‌زنند.
یعنی یک اتم خاص ، نه تنها در اثر تابش فرو نمی‌ریزد، بلکه نوری هم که از خود تابش می‌کند، رنگهای یا فرکانسهای گسسته و معینی دارد. گسسته بودن طیف تابشی اتمها از جمله علامت سؤالهای ناجور در مقابل فیزیک کلاسیک و فیزیکدانان دهه‌‌ی 1890 بود

 

فاجعه‌ی فرابنفش:
برگردیم سر تقسیم کردن نور.
ماکسول (۱۸۷۹-۱۸۳۱) نور را به صورت یک موج الکترومغناطیس در نظر گرفته بود. از این رو، همه فکر می کردند نور یک پدیده‌ی موجی است و ایده‌ی «مولکولِ نور»، در اواخر قرن نوزدهم، یک لطیفه‌ی اینترنتی یا SMS کاملاً بامزه و خلاقانه محسوب می شد. به هر حال، دست سرنوشت یک علامت سؤال ناجور هم برای ماهیت موجی نور در آستین داشت که به «فاجعه‌ی فرابنفش» مشهور شد:
یک محفظه‌ی بسته و تخلیه‌شده را که روزنه‌ی کوچکی در دیواره‌ی آن وجود دارد، در کوره ای با دمای یکنواخت قرار دهید و آن‌قدر صبر کنید تا آنکه تمام اجزا به دمای یکسان (تعادل گرمایی) برسند.
در دمای به اندازه‌ی کافی بالا، نور مرئی از روزنه‌ی محفظه خارج می‌شود، مثل سرخ و سفید شدن آهن گداخته در آتش آهنگری.
در تعادل گرمایی، این محفظه دارای انرژی تابشی‌ای است که آن را در تعادل تابشی - گرمایی با دیواره ها نگه می‌دارد. به چنین محفظه‌ای «جسم سیاه» می‌گوییم. یعنی اگر روزنه به اندازه‌ی کافی کوچک باشد و پرتو نوری وارد محفظه شود، گیر می‌افتد و نمی‌تواند بیرون بیاید.
نمودار انرژی تابشی در واحد حجم محفظه، برحسب رابطه رایلی- جینز در فیزیک کلاسیک و رابطه پیشنهادی پلانک

فرض کنید میزان انرژی تابشی در واحد حجمِ محفظه (یا چگالی انرژی تابشی) در هر لحظه U باشد.
سؤال: چه کسری از این انرژی تابشی که به شکل امواج نوری است، طول موجی بین ۵۴۶ (طول موج نور زرد) تا ۵۷۸ نانومتر (طول موج نور سبز) دارند؟
جوابِ فیزیک کلاسیک به این سؤال برای بعضی از طول موج‌ها بسیار بزرگ است! یعنی در یک محفظه‌ی روزنه دار که حتماً انرژی محدودی وجود دارد، مقدار انرژی در برخی طول موج‌ها به سمت بی نهایت می‌رود. این حالت برای طول موج‌های فرابنفش شدیدتر هم می‌شود.

 

 رفتار موجی ـ ذره‌ای:در سال ۱۹۰۱ ماکس پلانک (Max Planck: ۱۹۴۷-۱۸۵۸) اولین گام را به سوی مولکول نور برداشت و با استفاده از ایده‌ی تقسیم نور، جواب جانانه ای به این سؤال داد. او فرض کرد که انرژی تابشی در هر بسامد v ــ بخوانید نُو ــ به صورت مضرب صحیحی از h است که در آن h یک ثابت طبیعی ــ معروف به «ثابت پلانک» ــ است. یعنی فرض کرد که انرژی تابشی در بسامد از «بسته های کوچکی با انرژی h» تشکیل شده است. یعنی اینکه انرژی نورانی، «گسسته» و «بسته ـ بسته» است. البته گسسته بودن انرژی به تنهایی در فیزیک کلاسیک حرف ناجوری نبود‌ (همان‌طور که قبل‌تر در مورد امواج صوتی دیدیم)، بلکه آنچه گیج‌کننده بود و آشفتگی را بیشتر می‌کرد، ماهیت «موجی ـ ذره‌ای» نور بود. این تصور که چیزی ــ مثلاً همین نور ــ هم بتواند رفتاری مثل رفتار «موج» داشته باشد و هم رفتاری مثل «ذره»، به طرز تفکر جدیدی در علم محتاج بود.

 

ذره چیست؟ ذره عبارت است از جرم (یا انرژیِ) متمرکز با مکان و سرعت معلوم.

موج چیست؟ موج یعنی انرژی گسترده شده با بسامد و طول موج. ذرات مختلف می‌توانند با هم برخورد کنند، اما امواج با هم برخورد نمی‌کنند، بلکه تداخل می‌کنند . نور قرار است هم موج باشد هم ذره! یعنی دو چیز کاملاً متفاوت.